Root-microbe communication through protein secretion.
نویسندگان
چکیده
Biotic interactions in the rhizosphere are biologically important, and although many of those interactions have been well studied, the role of secreted proteins in the cross-talk between microbes and roots has not been investigated. Here, protein secretion was studied during the communication between the roots of two plants (Medicago sativa and Arabidopsis thaliana) and the bacterial symbiont of one of these species (Sinorhizobium meliloti strain Rm1021) and an opportunistic bacterial pathogen of A. thaliana (Pseudomonas syringae pv. tomato DC3000) using a proteomic approach. It was found that protein exudation in the M. sativa-S. meliloti interaction caused an increase in the secretion of seven plant proteins, such as hydrolases, peptidases, and peroxidases among others in two or more time points compared with the plant control. In addition, four proteins, all of bacterial origin, were increased 1.5-fold more in this interaction compared with S. meliloti alone. However, these proteins were not induced when M. sativa was inoculated with P. syringae DC3000. The interaction between A. thaliana and P. syringae DC3000 highly induced the secretion of several plant proteins related to defense soon after initial contact with P. syringae, but these proteins were not secreted in the incompatible interaction with S. meliloti. The results of this study reveal a specific, protein level cross-talk between roots and microbes. These results suggest that secreted proteins may be a critical component in the process of signaling and recognition that occurs between compatible and incompatible interactions.
منابع مشابه
Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley
The microbial communities inhabiting the root interior of healthy plants, as well as the rhizosphere, which consists of soil particles firmly attached to roots, engage in symbiotic associations with their host. To investigate the structural and functional diversification among these communities, we employed a combination of 16S rRNA gene profiling and shotgun metagenome analysis of the microbio...
متن کاملBiochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation
Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, act...
متن کاملA root-knot nematode secretory peptide functions as a ligand for a plant transcription factor.
Parasitism genes expressed in the esophageal gland cells of root-knot nematodes encode proteins that are secreted into host root cells to transform the recipient cells into enlarged multinucleate feeding cells called giant-cells. Expression of a root-knot nematode parasitism gene which encodes a novel 13-amino-acid secretory peptide in plant tissues stimulated root growth. Two SCARECROW-like tr...
متن کاملProtein as Chemical Cue: Non-Nutritional Growth Enhancement by Exogenous Protein in Pseudomonas putida KT2440
Research pertaining to microbe-microbe and microbe-plant interactions has been largely limited to small molecules like quorum sensing chemicals. However, a few recent reports have indicated the role of complex molecules like proteins and polysaccharides in microbial communication. Here we demonstrate that exogenous proteins present in culture media can considerably accelerate the growth of Pseu...
متن کاملUpdate on Root Exudation and Rhizosphere Biology Root Exudation and Rhizosphere Biology
Our understanding of the biology, biochemistry, and genetic development of roots has considerably improved during the last decade (Smith and Fedoroff, 1995; Flores et al., 1999; Benfey and Scheres, 2000). In contrast, the processes mediated by roots in the rhizosphere such as the secretion of root border cells and root exudates are not yet well understood (Hawes et al., 2000). In addition to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 37 شماره
صفحات -
تاریخ انتشار 2008